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Abstract

This paper describes the methods and classes

that we de�ned and the tools that we built

to augment the C++ language so that it would

better support the construction of an object-

oriented operating system. To motivate the de-

velopment of these facilities, we brie
y describe

Choices , an object-oriented operating system

that runs on bare hardware, and its requirements

for object-oriented language support. Together

these facilities provide the automatic deletion of

unreachable objects, �rst-class classes, dynami-

cally loadable code for classes, and class-oriented

debugging. Because of our experience building

Choices , we advocate these features as useful,

simplifying and unifying many aspects of object-

oriented systems programming.

1 Introduction

Choices [Campbell 87] is an object-oriented op-

erating system written in an object-oriented
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language (C++[Stroustrup 86]). It supports an

object-oriented application interface based on

objects, inheritance, and polymorphism. User

and system objects can be created and deleted

dynamically. In this paper we describe our expe-

riences programming the system and the tools we

built to take advantage of C++ in the construc-

tion of a large object-oriented system. These

tools include:

� the automatic deletion of unreachable ob-

jects from various environments,

� run-time exposure of classes and the class

hierarchy,

� facilities to load dynamically new subclasses

and code into the kernel or a user program,

� debugging facilities for objects and classes

that are independent of the compiler vendor,

machine, and environment.

Our research e�orts are directed towards de-

veloping an object-oriented operating system

and not towards language design. We seek to use

the object-oriented facilities of a language like

C++ to achieve our goals of building an object-

oriented operating system. From our perspec-

tive, an object-oriented systems programming

language should include a minimal set of e�-

cient encapsulation, inheritance, and polymor-

phism mechanisms that can be used to build the

other concepts required in developing a system.

Although C++ itself is not a minimal language,



we have found it e�cient[Russo 90]. Despite the

lack of certain object-oriented facilities in the

language, we have been able to construct these

facilities from more primitive mechanisms. We

believe our experiences may be useful to future

object-oriented language designers and builders

of other object-oriented systems.

Section 2 introduces the Choices operating

system and provides the motivation for develop-

ing automatic deletion of unreachable objects,

�rst-class classes, run-time loadable code, and

portable debugging facilities. The next four sec-

tions describe our implementation of each of

these features. Section 7 summarizes our expe-

riences.

2 The Choices Object-Oriented

Operating System

Choices has, as its kernel, a dynamic collection

of objects. System resources, mechanisms, and

policies are represented as instances of classes

that belong to a class hierarchy. For program-

ming convenience, the root of the hierarchy is

class Object and the classes of the hierarchy are

represented at run-time as Class objects.

The system has over 300 classes and 78,000

lines of source code. Choices runs on bare hard-

ware: the Encore Multimax, the Apple Macin-

tosh IIx, the AT&T WGS-386, and the IBM

PS/2. It supports both uniprocessor and mul-

tiprocessor architectures. Choices is not a reim-

plementation of UNIX nor does it require the

services of a UNIX kernel.

All entities in the operating system are mod-

eled as objects and include: system processes,

user processes, regions of memory, �les, and

hardware devices like CPU's and disk controllers.

The application/kernel interface is de�ned by

method invocations from objects in user space to

objects in kernel space. In user space, a kernel ob-

ject is represented by an ObjectProxy[Russo 91].

An ObjectProxy is created dynamically if the pro-

tection policy of the kernel object is not violated.

A Choices Process executes in a Domain.

The Domain maps a collection of logical

data stores or MemoryObjects into a virtual

memory[Russo 89]. The MemoryObject provides

random access to the contents of the data store.

A MemoryObject can be memory-mapped into

virtual memory. Direct access to the contents

of the MemoryObject is provided by using the

virtual memory hardware mapping mechanism.

Each memory-mapped MemoryObject can be

paged to its own backing store using indepen-

dent paging algorithms.

Persistent data is implemented as a back-

ing store that is loaded as a MemoryObject

into virtual memory when needed. Persis-

tent objects are encapsulated persistent data

items de�ned by a class hierarchy. They

are activated on demand and deactivated

automatically[Campbell 90]. Persistent objects

may store references to other persistent objects.

The mechanism underlying persistent data

is derived from an object-oriented �le sys-

tem model. The model separates access meth-

ods from implementation details.MemoryObject

subclasses support access to data stored on disks,

�les, or primary memory. The data may be for-

matted in various ways including the representa-

tions used to support UNIX 4.3 BSD, MS-DOS,

and UNIX System V �le systems[Madany 89].

Security is provided by a combination of ac-

cess rights maintained by the �le system, in-

dividual objects, and a user/system protection

mechanism. Kernel objects are protected by su-

pervisor state and by the virtual memory hard-

ware. Method calls to kernel objects from user

applications cannot be performed unless the user

has been granted permission to access the object.

That permission is provided as an ObjectProxy .

Once provided, all method calls to the Object-

Proxy are trapped and converted to method calls

to the kernel object. During the trap, they are

checked for validity by a kernel protection mech-

anism. Non-kernel objects are mapped into the

virtual memory space of the application. Their

data segments may be shared between applica-



tions using shared virtual memory. Once access

is established, method calls can be made directly

from the application to the object.

3 Automatic Deletion of Un-

reachable Objects

In Choices all resources, hardware devices, data,

and processes are represented within an object-

oriented model of the system. The system re-

quires e�cient mechanisms to create and delete

objects shared by many Domains . For example,

several Processes , some of which are in di�erent

Domains , may open the same �le for read/write

access. The �le system represents the persistent

data in the �le as aMemoryObject . A FileStream

instance provides a read/write interface to an

application program and implements the UNIX

notion of a sequential byte stream and current

position within the �le. Each application pro-

cess opening a �le uses a FileStream as its in-

terface. However, it may share the interface with

other processes in the same Domain. In both

cases, MemoryObjects and FileStreams cannot

be deleted until all the processes that access

them have closed the �le. Automatic deletion of

MemoryObjects and FileStreams when they are

no longer required simpli�es code and eliminates

system programming errors.

Although ad hoc reference counting and other

garbage collection techniques can be employed

to implement the features of the operating sys-

tem, these mechanisms arise so often in an oper-

ating system implementation that we have cho-

sen to embed them within the C++ base classes

that we use to support our software develop-

ment. Several object-oriented languages, includ-

ing Smalltalk[Goldberg 83], allow objects to be

constructed explicitly and delete them implic-

itly. In C++, however, objects must be both con-

structed and deleted explicitly. This places a

signi�cant burden on the programmer, since in

all but the most trivial object-oriented systems,

it is impossible to determine at compile-time

when each object should be deleted. Two meth-

ods of determining at run-time when to delete

objects are garbage collection and reference-

counting[Goldberg 83].

3.1 Garbage Collection Algorithms

Garbage collection algorithms start with a set

of objects, called root objects, that are by de�ni-

tion in use. Next, they determine all objects that

are reachable by any chain of references from

the root objects, and then they delete all objects

that were not reachable. Reference counting al-

gorithms keep a count of the number of pointers

to each object. When an object's reference-count

reaches zero, the object is deleted.

Garbage collection is often considered expen-

sive, though some algorithms have negligible

overhead per object deleted[Ungar 84]. Even ef-

�cient algorithms, however, may have unaccept-

able interactive performance, though some al-

gorithms are designed speci�cally to avoid this

problem[Baker 78]. Reference counting overhead

is proportional to how often pointers to objects

are stored.

Garbage collection algorithms for languages

like Smalltalk can e�ectively determine all ob-

jects to delete; reference counting algorithms for

most languages, however, usually fail to detect

unreachable objects that belong to \pointer cy-

cles." To implement an e�ective garbage collec-

tion algorithm, one must be able to determine

the location of objects and which words of stor-

age are pointers to objects[Seliger 90].

We chose to use reference counting for two

reasons: �rst, reference counting has predictable

space and time overheads, and second, run-time

information about the location of C++ objects

and pointers is not readily available.

3.2 Reference-Counting Functions

Having chosen to use reference-counting for au-

tomatic object deletion, we designed a set of

classes, methods, and programming conventions

to automate the process as much as possible.



All objects in the system that require au-

tomatic deletion inherit reference-counting be-

havior from class Object, which has an integer

reference-count and �ve member functions re-

lated to this behavior: Object, reference, unref-

erence, noRemainingReferences, and �Object.

Object() The constructor for class Object initial-

izes the object's reference-count and inserts

the object in the global object table. The

global object table enables storage leak de-

tection (by displaying all objects that still

exist at system shutdown) and the display

of members of classes at run-time (see Sec-

tion 4).

reference() The public member function refer-

ence atomically increments the object's

reference-count; it must be called each time

a pointer to an object is stored. To increase

performance, reference is designed so that it

can be made an inline function.

unreference() The public member function un-

reference atomically decrements the object's

reference-count and calls noRemainingRefer-

ences if the object's reference-count reaches

zero. It must be called each time a pointer

to an object is overwritten. To increase per-

formance, unreference is designed so that it

can be made an inline function.

noRemainingReferences() The protected, virtual

member function noRemainingReferences(),

which should only be called by unrefer-

ence, calls the object's destructor by delet-

ing \this." This function can be overloaded

to de�ne statements to be executed before

the object's destructor is called; no state-

ments, however, can be executed after the

destructor has been called.

�Object() The protected, virtual destructor for

class Object , which should only be called by

noRemainingReferences, removes the object

from the global object table. To avoid pre-

mature deletion of objects, all subclasses of

class Object must de�ne protected destruc-

tors.

These �ve methods provide an e�ective and


exible mechanism that implements reference-

counting behavior of objects, but they still place

too heavy a burden on the programmer. This

burden is the requirement that calls to reference

and unreference functions be placed at all appro-

priate places throughout the code. Experience

showed this requirement was too di�cult to sat-

isfy. To remove this burden, we chose to treat

pointers to reference-counted objects as objects

themselves.

3.3 Pointers as Objects

The ObjectStar class de�nes \�rst-class" point-

ers to Objects. Instances of ObjectStar have a

traditional C++ pointer (Object * pointer) as

their only data member. Because ObjectStar de-

�nes no virtual member functions, its instances

have no vtable pointer and therefore require the

same amount of storage as a traditional C++

pointer. The ObjectStar class de�nes �ve types

of member functions: constructors, destructors,

dereferencing operators, assignment operators,

and equivalence operators. We use ObjectStars

wherever traditional C++ pointers would nor-

mally be used for member variables, local vari-

ables, global variables, and return values from

functions.

Constructors and Destructors ObjectStar

de�nes three constructors and one destructor:

ObjectStar();

ObjectStar( Object * );

ObjectStar( ObjectStar & );

~ObjectStar();

The �rst constructor initializes pointer to

zero; it allows programs to de�ne arrays of

ObjectStars, since the class of the elements of

an array in C++ must provide a parameter-

less constructor[Stroustrup 86]. The second and

third constructors store their parameter value

in pointer and call pointer->reference()



if pointer is non-zero. The destructor calls

pointer->unreference() if pointer is non-

zero.

Assignment Operators ObjectStar de�nes

two assignment operators:

ObjectStar& operator=( Object * );

ObjectStar& operator=( ObjectStar & );

Both perform the operations of the construc-

tor and then the operations of the destructor

that takes the same type of parameter.

Dereferencing Operators ObjectStar de-

�nes two dereferencing operators:

operator Object *();

Object * operator->();

The Object * operator, which converts anOb-

jectStar to a traditional pointer, is intended to

be used when passing pointers to objects as pa-

rameters to functions. Operator -> supports the

invocation of the member functions of the object

pointed to by pointer.

Equivalence Operators ObjectStar de�nes

two equivalence operators:

friend int operator==( ObjectStar &, void * );

friend int operator!=( ObjectStar &, void * );

Operator == returns true if and only if the

value of the pointer member of the �rst pa-

rameter is equal to the value of the second pa-

rameter. Operator != returns true if and only

if the value of the pointer member of the �rst

parameter is not equal to the value of the second

parameter.

3.4 Pointer Meta-hierarchy

To preserve the compile-time type checking fea-

tures of C++, we developed a tool to build a

meta-hierarchy of pointer classes that mirrors

the hierarchy rooted by class Object. Each class

in the meta-hierarchy de�nes constructors, as-

signment operators, and dereference operators

analogous to those de�ned by ObjectStar. Nei-

ther a destructor nor equivalence operators need

to be de�ned, since they can be inherited directly

from class ObjectStar. Each subclass of Object-

Star, however, de�nes two additional construc-

tors and two additional assignment operators:

SubclassStar( Object * );

SubclassStar( ObjectStar & );

SubclassStar& operator=( Object * );

SubclassStar& operator=( ObjectStar & );

Besides performing the operations of the simi-

lar functions described in Section 3.3, these con-

structors and assignment operators perform a

downward pointer cast

1

and a run-time check

(see Section 4) of the safety of the cast.

4 Classes as Instances

The motivation for representing classes as run-

time instances in Choices arises from several re-

quirements.

� The object-oriented application interface

supports the dynamic creation and removal

of objects in the kernel and user space. Ref-

erences to the objects may be passed from

object to object. Class enquiry functions

allow simpli�ed programming, monitoring,

and class-based, run-time controllable de-

bugging.

� Instances of new subclasses of system ab-

stract classes provide a mechanism to ex-

tend the application interface in a con-

trolled but non-trivial manner. Classes pro-

vide query functions that return their super-

class and subclasses, documenting the state

and evolution of the system and providing a

database of system facilities.

� Instances of a class can be listed providing

a database of system services that conform

to the protocol of the class.

1

There are few cases in which a downward pointer cast

is appropriate, one such case we have found is the retrieval

of persistent objects from name servers and object stores.



� The classes of objects are represented at

run-time as objects. This allows run-time

checking

2

that the protocols used in mes-

sages to objects are consistent with their

de�nition.

� The classes of persistent objects can be

recorded as persistent objects.

4.1 Implementation

First-class classes or class objects are imple-

mented in Choices using a class called Class .

Classes are similar to the Dossiers described in

[Interrante 90], except that Classes also support

dynamic code linking and portable debugging.

At run-time, every signi�cant object in the Choi-

ces system is associated with a speci�c Class .

The code given in Figure 1 de�nes the interface

for Classes .

The typedef de�nes pointers to functions we

call addressable constructors that initialize dy-

namically loaded class instances (see Section 5).

The Class constructor takes a pointer to the

Class's superclass, which is zero for the root

of a hierarchy, and a character string name of

the class. The constructor has an optional third

parameter, which is a pointer to an address-

able constructor. If a class does not have an ad-

dressable constructor or if its de�nition is de-

ferred until run-time, then the third argument

can be omitted. If an addressable constructor

is supplied at run-time, a CodeLoader (see Sec-

tion 5) may use the setConstructor operation to

bind future invocations of the Class's construc-

tor to invocations of a speci�c addressable con-

structor. The constructor operation provides a

dynamically-bound constructor that will initial-

ize an instance of the class corresponding to the

Class .

The classOf operation returns a pointer to the

Class of which the object is an instance. The isA

2

C++ provides safe and e�cient compile-time type

checking; this type checking can be, however, circum-

vented. Also, one can use run-time type checking to

double-check compile-time type checking.

typedef ObjectStar (*CP)( Object * );

class Class : public Object {

...

public:

Class( Class *, char * name, CP constructor = 0 );

virtual setConstructor( CP constructor );

virtual ObjectStar constructor( Object * );

virtual ClassStar classOf();

virtual int isA( Class * );

virtual char * name();

virtual ClassStar parent();

virtual ClassStar child();

virtual ClassStar sibling();

virtual int displayMembers( OutputStream * );

virtual int displayKindred( OutputStream * );

virtual void setInitDebugMask( char mask );

virtual void setInitDebugMessages( short msgs );

virtual void setInitDebugObjects( int objects );

virtual int debugMembers( char mask, short msgs );

virtual int debugKindred( char mask, short msgs );

}

Figure 1: Class Interface De�nition



operation returns true if and only if the param-

eter is a superclass of the Class .

The class hierarchy is modeled as a tree of ar-

bitrary degree but it is implemented as a binary

tree. Each Class object has a parent (superclass),

a child (subclass), and a sibling (the next class

with the same superclass). By convention, a zero

indicates the parent of the root of a hierarchy,

the child of a Class with no subclasses, the sib-

ling of a Class with no superclass, or the sibling

of a Class at the end of its superclass's sibling

list.

Using Smalltalk terminology, an object is a

member of the class from which it was instan-

tiated. An object is said to be a kind of the class

of which it is a member, and of all the class's

superclasses. The displayMembers operation dis-

plays on the OutputStream the names of all ob-

jects that are members of this Class . The display-

Kindred operation displays on the OutputStream

the names of all objects that are kind of this

Class .

The next �ve methods help support the

portable debugging features described in Sec-

tion 6. The setInitDebugMask, setInitDebug-

Messages, and setInitDebugObjects operations set

the Class's initial Raidmask,message-count, and

object-count to given values. The object-count

determines how many future objects will be ini-

tialized with the current mask and message-

count. If the object-count is zero, future objects

belonging to this Class will be given zero masks

and message-counts, regardless of their current

values.

The debugMembers operation sets the Raid

mask and Raid message-count of all existing

members of the Class . The debugKindred opera-

tion sets the Raid mask and Raid message-count

of all existing objects that are a kind of this

Class .

4.2 Usage

An auxiliary program, allClasses, coordinates

the de�nition and instantiation of Classes ; it is

run automatically by the Choices make �les.

To simplify the allClasses program, we adopt

a programming convention that requires certain

lines of code to be present in both the header

(\.h") and source (\.cc") �les of a class. For ex-

ample, consider the class Object . It is de�ned

in \Object.h" and implemented in \Object.cc".

The lines added to de�ne a �rst-class class for

Object in �le \Object.h" are:

extern ClassStar ObjectClass;

class Object ... {

...

public:

ClassStar classOf();

...

};

The lines de�ne a pointer to the Class that is

assigned a value at run-time. The value is used

by the classOf implementation shown below. The

lines needed in �le \Object.cc" are:

ClassStar

Object::classOf()

{

return( ObjectClass );

}

4.3 Displaying the Class Hierarchy

from the System Shell

Each Class is also bound to a name in the ker-

nel's NameServer . A user of the system shell can

request information about any Class's place in

the hierarchy. The Class is looked up by name

in the NameServer , and the requested informa-

tion is displayed.

There are three commands for displaying class

hierarchy information:

1. ancestors, which recursively displays the

superclasses of the given class;

2. descendents, which recursively displays

the subclasses of the given class; and



3. hierarchy, which recursively displays �rst

the superclasses and then the subclasses of

the given class.

An example of the hierarchy command, which

shows both the ancestors and descendents of

class UNIXInode, is shown below:

Choices> hierarchy UNIXInode

Object

MemoryRange

MemoryObject

PersistentMemoryObject

FileObject

UNIXInode <<<

BSDInode

SVIDInode

4.4 Displaying Instances of Classes

from the System Shell

All instances of subclasses of class Object are

inserted into a global object table when con-

structed and removed from the table when

deleted. Classes have access to this table and can

iterate through the table searching for instances

of the class that they represent.

The system shell uses the Smalltalk terminol-

ogy both for displaying instances of a class and

for Raid debugging. There are two commands for

displaying instances of classes:

1. members, which displays all instances of

the given class, and

2. kindred, which displays all instances of the

given class and its descendants.

Examples of these commands follow:

Choices> members MemoryObjectPartition

MemoryObjectPartition[458100](:0:2)

MemoryObjectPartition[458040](:0:0)

2 instances.

Choices> kindred UNIXInode

BSDInode[466000](/)(:0:0:2)

BSDInode[466100](lost+found)(:0:0:3)

SVIDInode[45a180](/)(:0:2:2)

3 instances.

5 Adding Subclasses to a Run-

ning C++ Program

Choices provides an extensible application inter-

face that permits the addition of new services to

the kernel without rebooting the system. Imple-

menting an extensible kernel as a dynamic col-

lection of objects allows a minimal kernel to be

de�ned for Choices . New features may be added

to the kernel to customize it for applications or

for the target environment. Existing software in

the system may invoke methods on these new

services if they are subclassed from an abstract

class known to the system at compile time. New

software added to the system may use all meth-

ods of the new services. C++ has neither dynamic

linking of code nor dynamic binding for construc-

tors. To simplify and generalize the mechanism

involved, the base classes of the system were ex-

tended to support the dynamic loading and link-

ing of new subclasses and their methods using

a scheme that has been used by several other

research groups[Dorward 90].

To access newly loaded code from an existing,

running program, the running program needs

a dynamic binding mechanism that maps mes-

sages (function calls) to invocations of the new

code. C++ has an ideal mechanism for perform-

ing this dynamic binding: the virtual function ta-

ble which is accessible through an object's vtable

pointer. Once an object has been constructed,

the member functions can be invoked through

the object's vtable pointer. However, C++ con-

structors, which assign vtable pointers to ob-

jects at run-time, are statically bound and may

not be called directly from an existing, running

program. The problem to be solved in an imple-

mentation of dynamic, loadable C++ code is to

allow existing programs to call the constructors

de�ned in the newly loaded classes.

5.1 Dynamically-bound Constructors

Each class in the Choices system is represented

by a Class object, described in Section 4, which



is accessible through NameServers . Our solution

to invoking traditional static C++ constructors

dynamically uses a constructor method, which in-

directly invokes the traditional static C++ con-

structor and is de�ned for Classes .

We distinguish three interrelated constructor

functions: traditional C++ constructors, which

have names like Object::Object, addressable con-

structors, which we name in the manner Object-

Constructor, and a dynamic constructor, which

we name Class::constructor. Traditional construc-

tors are no longer called directly by code that is

designed to take advantage of the dynamic link-

ing facility. However, they are still used to allo-

cate and initialize heap storage.

An addressable constructor, which is imple-

mented as a C++ function, is linked and loaded at

the same time as the new class to which it will be

bound. The linker can thus bind an invocation of

the traditional constructor into the code for an

addressable constructor. Unlike traditional con-

structors, addressable constructors return a zero

in case of failure. A failure may occur if the class

of the parameter to the addressable construc-

tor was inappropriate (because a run-time check

failed.)

A dynamic constructor is implemented by the

Class::constructor function. It provides dynamic

linking to the traditional static constructor func-

tion by an invocation of the addressable con-

structor to which the static constructor has been

linked. When the code for the new class is to

be loaded, a Class object is created to repre-

sent the new class. When the code is loaded,

the linker installs the address of the addressable

constructor in the Class object's constructor in-

stance variable. When the dynamic constructor

of the Class object is invoked, it, in turn, in-

vokes the addressable constructor stored in the

constructor instance variable. The addressable

constructor then invokes the static constructor.

In detail, the following steps are performed by

the dynamic constructor:

1. If the constructor variable is zero, it creates

an instance of class CodeLoader (described

below) and initializes it with the name of

the Class .

2. Since the CodeLoader object performs all its

work when created, it then deletes the Code-

Loader object.

3. If the constructor variable is still zero, then

it fails by returning zero.

4. If the constructor variable is non-zero,

it calls the addressable constructor, which

calls the traditional constructor. The re-

turn value of the traditional constructor is

also returned by the addressable construc-

tor, which is then returned by the dynamic

constructor.

5.2 The CodeLoader

Choices de�nes a subclass of the abstract class

CodeLoader for each type of object �le format

used by the project. The �rst such class that

we implemented supported the Common Ob-

ject File Format[Gircys 88]; thus the subclass is

named COFFLoader . The CodeLoader construc-

tor performs the following operations:

1. open a �le that contains the symbol table

for the running program.

2. look up the name of the class with the un-

de�ned constructor in a NameServers that

maps class names to �le names.

3. if the �le name is found, open the corre-

sponding �le, which should be a relocatable,

unstripped module that includes the code

for the class and for closely related classes.

4. allocate memory and read code from �le.

5. resolve unde�ned symbols in the loaded

code with the symbols found in the running

program's symbol table.

6. relocate symbols in the loaded code, basing

them on the memory address at which the

code is loaded.



7. create Class objects for any loaded classes

that do not already have them.

8. install addresses of addressable constructors

de�ned in the loaded code into correspond-

ing Classes .

5.3 Evaluation

By making loadable C++ classes available in the

support for Choices , parts of the operating sys-

tem can be greatly simpli�ed. For example, the

Choices �le system supports UNIX 4.3 BSD, Sys-

tem V, and MS-DOS �les. File system compo-

nents that are needed can be loaded when a re-

quest is made to access a certain type of �le.

Thus, neither the kernel nor user space is pe-

nalized for the 
exibility that is provided by the

�le system. A further bene�t of this approach

in the �le system is that it makes loading the

class methods for persistent objects that are acti-

vated simple to implement. Further, user-de�ned

persistent objects may be added at any time to

the collection of persistent objects in the system

using the same mechanism. The C++ language

could have provided improved support for load-

able objects if invocations of constructors could

be linked at run-time.

6 Portable Debugging

Debugging the kernel of an operating system is

not a pleasant task, even if it is object-oriented.

The problem is compounded by a lack of a ker-

nel debugger that can report errors in terms of

the objects and classes of which the system is

composed. Debugging systems for C++ do exist,

but most of them are proprietary, making them

unsuitable for use in our activities. Further, our

system is implemented on a wide variety of ar-

chitectures. Because of compiler availability, for

some systems we use the Gnu g++ compiler, and

in other cases we use AT&T's cfront. The Gnu

symbolic debugger gdb allows symbolic debug-

ging of programs, but this system only gives

rudimentary support to the debugging of classes

and instances. The lack of debugging facilities

and non-uniformity of the debugging environ-

ment encouraged us to build debugging into the

system as a feature that we call Raid, which is

the brand name of some household pesticides.

Raid implements portable, object-oriented de-

bugging in Choices . It is implemented as a set

of methods, instances, and statements that are

included in the Choices source code and oper-

ate by printing the values of expressions at run-

time on the Choices console. Because the debug-

ging facilities exist in objects at run-time, it pro-

vides a programmable debugging interface. Var-

ious debugging features can be turned on or o�

dynamically at run-time using Choices applica-

tions, like the Choices command interpreter or

standard debugging tools like gdb. Further, a

library of debugging utilities has been built up

to provide more sophisticated debugging tools.

Raid provides a much more 
exible debugging

environment than one based on placing diagnos-

tic print statements in the code because it is in-

tegrated with the Choices object-oriented archi-

tecture.

6.1 Raid Masks

Raid supports �ve di�erent categories of debug-

ging statements for either existing instances or

future instances of speci�c classes or classes and

their descendents. These debugging categories

are shown in Figure 2 along with the six bit

masks that are used to encode them in Raid. The

categories re
ect common debugging problems

that have arisen in Choices .

Masks can be combined (using a logical sum)

in interactive debugging commands. For exam-

ple, the Choices system shell (command inter-

preter) includes the odb or cdb statements (see

below) that, with the mask "RaidConstructor j

RaidReference", can be used to view construc-

tor, destructor, and reference counting method

invocations. For convenience, masks can either

be speci�ed as bit masks or as names (option-



Category Raid Mask Name Bit Mask

constructor/destructor functions RaidConstructor 0 1

reference/unreference/noRemainingReferences functions RaidReference 1 2

public member functions RaidMethod 2 4

protected and private member functions RaidProtected 3 8

detailed information within any type of member function RaidDetail 4 16

all of the above RaidAll 0{4 31

Figure 2: Raid Debugging Masks

ally abbreviated) enclosed in double quotation

marks. Code that is instrumented with Raid

statements use a single named mask to indicate

under what conditions the information from the

instrumentation is to be displayed. The names

used are given in Figure 2.

6.2 Raid Implementation

C++ o�ers both the well-known C-style printf

statement that some C++ developers prefer or

the new C++-style << operator. Raid supports

both means of printing debugging information:

� Raid( mask )() supports printf-style debug-

ging, and

� Raids( mask ) supports <<-style debugging.

Raid has a simple implementation | a pair of

macro de�nitions, which use the logic given in

Figure 3.

6.3 Instrumentation

Raid does not automate the inclusion of debug-

ging statements; the developer must still insert

these statements at useful places within the code.

From experience we have adopted the conven-

tion of inserting Raid statements at three places

within member functions: on function entry (to

display the arguments with which the function

was called), before each return statement (to dis-

play the return value(s) of the function), and

between or within blocks of code (to display de-

tailed information about the current function in-

vocation).

Because Raid is part of the Choices system,

one must exercise some restraint to avoid writing

expressions in debugging statements that might

have Choices side-e�ects. For example, the \++"

or \--" operators will cause side-e�ects if used

within Raid statements.

Constructor Instrumentation The begin-

ning of each constructor should call the initDebug

method. This initializes the object's mask and

message count with the values set in its Class .

Constructors may also include Raid statements

on entry and exit, like the examples given below

for member functions.

Function Entry Instrumentation Function

entry can be instrumented by inserting a Raid

statement at the beginning of the function. This

Raid statement should be labeled with the appro-

priate mask. For example, one can instrument

the beginning of the following member function:

ReadFileStream::read( char * buffer, int length )

using the Raidmask \RaidMethod" with either

of the following Raid statements:

Raid( RaidMethod )

( "%N->ReadFileStream::read(%x, %d)\n",

this, buffer, length );

Raids( RaidMethod )

<< this << "->ReadFileStream::read("

<< asHex( buffer ) << ", " << length << ")\n";



AND

OR

AND
Object’s Debug Counter > 0

Object’s Debug Mask matches

Global Debugging Enabled

StandardOutput has been initialized

Figure 3: Raid Logic

The various Raid masks allow functions to be

classi�ed into the categories given in Figure 2.

Function Exit Instrumentation Function

exit can be instrumented by inserting a Raid

statement before the return of the function. For

example, before the return statement:

return( bytesRead );

the code can be instrumented by a Raid state-

ment with either of the following forms:

Raid( RaidMethod )

( "%N->ReadFileStream::read returns %d\n",

this, bytesRead );

Raids( RaidMethod )

<< this << "->ReadFileStream::read returns "

<< bytesRead << "\n";

The mask for entry and exit should match.

Detailed Debugging Complex code requires

a more detailed debugging instrumentation that

provides information on the status of variables

within a function. A developer may add other

Raid statements throughout a function body.

The \RaidDetail"mask is used for this purpose.

6.4 Controlling Raid output from the

System Shell

Raid output can be controlled from both the

Choices shell and from kernel or application

code. This section describes the control of Raid

from the system shell. There are two commands

for controlling Raid debugging:

� odb, which turns on debugging for existing

objects belonging to a given class, and

� cdb, which turns on debugging for future

objects belonging to a given class.

The commands allow debugging information to

be selected on a class basis for particular cate-

gories of instrumentation:

Choices> odb {member|kind} class mask [msgs]

Choices> cdb {member|kind} class mask [msgs [objs]]

For both commands, a mask of zero will turn

o� debugging. For example, the following com-

mand turns on debugging for the public meth-

ods of all the currently instantiated members of

ReadFileStream:

Choices> odb member ReadFileStream "RaidMethod"

and the next command turns on all the debug-

ging of all the currently instantiated members of

FileStream and its subclasses. It will cause the

display of the next 10 messages for each object:

Choices> odb kind FileStream "RaidAll" 10

Experiences with debugging Choices led us to

add a Raid feature for examining particular ac-

tivities. The cdb command allows instrumenta-

tion to be turned on for objects that are created

as a result of some newly started activity. For

example, the following command turns on con-

structor and reference count debugging for all

future objects instantiated from class BSDInode:



Choices> cdb member BSDInode "RaidCon|RaidRef"

The count parameters may be used to turn on

all debugging for 10,000 messages for each of the

next, say, 3 objects instantiated. For example,

the following command turns on debugging from

instances of class FileStream and its subclasses:

Choices> cdb kind FileStream "RaidAll" 10000 3

6.5 Controlling Raid from Kernel or

Application code

Debugging instrumentation can be controlled

from C++ code by three operations on Objects:

1. setDebugMask( char mask )

2. setDebugMessages( short messages )

3. setName( char * str )

The setDebugMask operation sets the object's

Raid mask to the given value. A mask of zero

will turn o� debugging for the receiving ob-

ject. The setDebugMessages operation sets the

object's message-count to the given value. A

message-count of zero will turn o� debugging for

the receiving object. An object must have a non-

zero mask and message-count before it will print

debugging messages. The setName operation sets

the object's \nickname" to a copy of the given

character string. The nickname is printed out

with each Raid statement.

In Choices objects may be debugged using

Raid in either system or user space. This is facili-

tated by the ObjectProxy mechanism that makes

invocations of method calls to kernel and user

objects transparent to the calling program.

6.6 Using Raid with a Symbolic De-

bugger

Although Raid is useful by itself, it becomes a

more powerful and 
exible tool when used with

a symbolic debugger. Advanced symbolic debug-

gers allow debugger commands to be executed

at breakpoints and permit messages to be sent

from the user to the objects of the program at

run-time. The implementation of the symbolic

debugger we use for system programming is in-

dependent of the Choices system console and so

it can be used to debug the early stages of a

Choices port to a new architecture. More impor-

tantly, the symbolic debugger allows the user to

interact with Raid at run-time, based on the ex-

ecution of speci�c breakpoints. Debugging infor-

mation output can be selected by setting masks

and counters interactively. This facility allows

the behavior of a class hierarchy or instance to

be examined at a speci�c point in the program.

In boot code, it also allows Raid to be used in-

teractively without input from the console.

For instance, using a symbolic debugger, one

can de�ne a macro that enables debugging in a

region of a source �le delimited by a starting and

an ending line. The macro sets a breakpoint at

the beginning of the region and another one at

the end of the region. It also associates debug-

ger commands with each breakpoint that turn

on or o� the global Raid debugging switch and

continue execution. The whole process is invisi-

ble to the user who sees only the output of the

Raid statements inside the region. This approach

allows control of debugging on a method or even

individual Raid statement basis.

7 Summary

During the construction of the Choices operating

system, we discovered that several facilities can

be of considerable importance and can lead to

great code simpli�cation in developing an object-

oriented operating system. The facilities are not

supported in C++, the Choices implementation

language. However, by careful organization, we

could introduce the facilities by building a suit-

able set of base classes and tools. The facilities

we found of value are:

� the automatic deletion of unreachable ob-

jects,

� the representation of a class by an object at

run-time,



� the dynamic loading of new subclasses and

code, and

� support for debugging classes and instances

at run-time.

The e�ect of these facilities was to speed up de-

bugging and simplify the code of many parts

of the operating system; for example, the �le

system, application interface, name-servers, and

persistent object code.

In conclusion, we would like to draw the at-

tention of language designers to the provision of

these facilities in an object-oriented systems pro-

gramming language. It remains an open question

whether these facilities are best provided directly

by the language or the language should support

the construction of these facilities. Our experi-

ence with C++ shows that some of the mecha-

nisms needed to implement the facilities could

not be programmed directly in the language. In-

stead, we had to build tools to augment the C++

language.
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